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High-order compact numerical schemes for non-hydrostatic
free surface �ows
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SUMMARY

The development of a numerical scheme for non-hydrostatic free surface �ows is described with the
objective of improving the resolution characteristics of existing solution methods. The model uses
a high-order compact �nite di�erence method for spatial discretization on a collocated grid and the
standard, explicit, single step, four-stage, fourth-order Runge–Kutta method for temporal discretization.
The Cartesian coordinate system was used. The model requires the solution of two Poisson equations
at each time-step and tridiagonal matrices for each derivative at each of the four stages in a time-step.
Third- and fourth-order accurate boundaries for the �ow variables have been developed including the top
non-hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been
a problem with many similar models that are second-order accurate is practically eliminated. A high
accuracy is obtained for the �ow variables including the non-hydrostatic pressure. The accuracy of the
model has been tested in numerical experiments. In all cases where analytical solutions are available,
both phase errors and amplitude errors are very small. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: non-hydrostatic; high-order compact; numerical dissipation; collocated grid; explicit
Runge–Kutta; free surface �ow

INTRODUCTION

Flow simulation in Civil Engineering has typically been carried out using the hydrostatic
approximation of the Navier–Stokes equations. This has been useful for cases where the ver-
tical scales of motion are small compared with the horizontal scales of motion. For many other
�ows, the hydrostatic approximation becomes inappropriate. Examples of these include, propa-
gation of short gravity waves, buoyancy-driven �ows and �ows occurring in rapidly changing
bottom topography. The full solution of the momentum equations of �uid �ow becomes
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necessary. The continued advancement of computer technology has spurred the realization
of numerical models using the complete Reynolds-averaged Navier–Stokes equations (see for
instance References [1–6]). These models have been formulated on a staggered grid. Time
integration is carried out either explicitly, semi-implicitly or implicitly. They are, at best,
second-order accurate but may sometimes be �rst-order accurate in time when the popular
projection method is used without any special treatment of the di�usive terms. In such cases
the projection method introduces a splitting error that is proportional to the time-step and the
eddy viscosity coe�cient [7].
The implications of the second-order accuracy are that the grid spacings have to be small

enough to achieve an acceptable level of accuracy. Larger grid spacings add to numerical
dissipation. This statement is applicable to explicit and semi-implicit as well as implicit dis-
cretization methods. The small grid spacings required adds to the computational demands of
the numerical scheme in terms of data storage and the total time taken for the computations.
In other cases, small grid spacings may violate the cell Reynolds number constraint (i.e. the
cell Reynolds number Rc62) leading to oscillations in the solution. The advantages of an
implicit scheme are primarily that a larger time-step could be possible and still obtain nu-
merically convergent schemes. For accuracy purposes, however, the chosen time-step requires
some control. With discretizations of the Navier–Stokes equations applied to convective dom-
inated �ows as often occurs in hydraulic engineering, considerations of accuracy eliminate the
advantages of the implicit scheme.
The usual practice with spatial discretization in the existing numerical solutions have been

to use the staggered grid introduced by Harlow and Welch [8]. Without the staggered grid, the
solution exhibit the so-called checker-board instability. A disadvantage of the staggered grid
is that it introduces additional levels of complexity in programming. As an example, using
the cell-centred discretization, the horizontal components of velocity are de�ned on di�erent
cell faces and the pressure at the centre of the cell. If multigrid methods have to be used
to accelerate the convergence of the solution, the grid transfer operators are often di�cult
to de�ne. In complex terrains where general coordinates have to be used, the programming
becomes ine�cient as the metrics of the transformation are required for all the di�erent
positions on the cell that the variables are de�ned. The use of collocated grid requires only
one metric of the transformation to be de�ned for each computational cell.
Other challenges faced with the numerical modelling using second-order methods include the

treatment of the top pressure boundary. It is often assumed to be atmospheric and no boundary
condition is provided for the velocity components. With the use of Cartesian coordinates,
there is the problem of the treatment of the velocity �ux across the surface. It is sometimes
assumed that the gradient of the horizontal velocity components across the top boundary is
zero [1]. This leads to a �rst-order accurate solution that yields numerically dissipative results.
The alternative high-order top boundary yields unstable results. Another alternative that has
proven useful has been the transformation of the vertical axis to � coordinates. Solution of
the transformed equations may, given certain circumstances, yield spurious results referred
to as hydrostatic inconsistency. The anomaly is attributed to the truncation errors of the
discretization and the pressure gradient term.
Recently, there have been progress in the treatment of the free surface pressure. An example

is provided by Stelling and Zijlema [9] who used an edge-based instead of a cell-centred
scheme to approximate the pressure more accurately. Another example is presented by Yuan
and Wu [6] who used the cell-centred scheme by integrating the pressure from the free surface
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to the centre of the cell. Both examples by treating the pressure for the surface cell more
accurately make possible the use of fewer vertical layers for simulating wave transformation.
The accuracy of the method as pointed out by Stelling and Zijlema [9], however, is expected
to approach that of the Boussinesq-type wave model of Peregrine [10] as the number of
vertical layers approaches one.
The Boussinesq-type wave models essentially transforms what is a three-dimensional phe-

nomenon to a two-dimensional one by depth-averaging. By doing so, �uid properties that vary
signi�cantly in the vertical are not well represented. The advantage of the non-hydrostatic wave
model over the Boussinesq-type wave model is its ability to resolve the vertical variation of
�uid properties more accurately. As an example, the simulation of the e�ects of viscosity or
turbulence on the �ow is better carried out with the non-hydrostatic wave model. The fewer
the number of vertical layers, the lesser the advantages of the non-hydrostatic free surface
model over the Boussinesq-type wave models.
The formulation of the high-order (de�ned as an order of accuracy greater than or equal to

three) model has become necessary to improve the resolution characteristics, increase accuracy
relating to numerical dissipation and make possible the use of a larger time-step to obtain
numerically stable schemes. With the use of the current model, a smaller number of grid
spacings are required to obtain the same level of accuracy as for second-order methods.
High-order boundaries have been formulated to take account of the required high-order

internal solution. It should be noted that the order of accuracy of the boundary can be one
less than that of the accuracy of the internal solution to achieve an overall accuracy determined
by the internal solution [11]. For the fourth-order solution, third- and fourth-order accurate
boundaries have been developed. The compact high-order scheme adopted has a smaller trun-
cation error compared with the standard fourth-order scheme. Besides, the compact scheme
requires only three grid points to de�ne its numerical stencil just as the second-order schemes.
Comparatively, the standard fourth order requires �ve grid points. The computational demands
for the high-order compact schemes are the same for both cases. Unlike the second-order
schemes, however, the truncation errors of the compact scheme are smaller.

Model development

The spatial discretization has been carried out on a collocated grid to reduce the level of com-
plexity associated with the staggered grid and facilitate the e�cient programming for its use
with general coordinates. The �rst-order time accurate Euler method is presented followed by
the single-point, four-stage fourth-order Runge–Kutta method. The high-order time integration
became necessary to avoid some of the constraints imposed by the Courant–Freiedrichs–Levy
(CFL) condition and cell Reynolds number. As a result, convectively stable solutions are
possible even for moderate-to-high Reynolds numbers. In the proposed algorithm, all the
required velocity components are computed explicitly after which the pressure is determined
from a Poisson equation from the known velocities. This is di�erent from the projection
method where an intermediate velocity is computed �rst, which does not satisfy continuity
with the assumption of hydrostatic conditions. In the next step, the non-hydrostatic pressure
is determined by ensuring that the continuity equation is satis�ed after which the velocities
are corrected. The projection method yields a �rst-order solution in time.
The model has been tested with the standing wave in a basin simulations to demonstrate the

elimination of the problem of checker-board instability. With the proposed method, the results
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show a signi�cant reduction of numerical dissipation as compared with existing models.
Further properties of the model are investigated including the number of Poisson solves re-
quired for each time-step to achieve the high-order accuracy. More importantly, the time taken
for the total scheme is assessed for the various possible number of Poisson solves suggested
in the literature. Other tests used in the model veri�cation include propagation of solitary
wave in a �at channel and wind-driven circulation.
While the model can be formulated in the implicit form, the convective-dominated �ows

used in the simulations make the implicit form unnecessary. The implicit form is suitable for
di�usive-dominated �ows. In such situations, a semi-implicit method is suggested. This will
be the subject of a future paper.
In the following section, the governing equations of �uid �ow are presented. The total

pressure is decomposed into hydrostatic and non-hydrostatic components and new equations
are derived based on the non-hydrostatic pressure and the gradient of the free surface. The
numerical solution method for the governing equations is then presented. This is based on
a fourth order in space method. Two time integration methods, the explicit �rst-order Euler
method and explicit fourth-order Runge–Kutta method are described. Results for the veri�ca-
tion of the algorithm are presented to demonstrate some of the advantages of the high-order
solution method. These are discussed in the next section and the main conclusions from this
work are presented.

GOVERNING EQUATIONS

The mathematical equations governing incompressible free surface �ows are obtained from
the conservation of mass and momentum.

∇ · u=0 (1)

@u
@t
+ (u · ∇)u+ 1

�
∇P=∇ · (�∇u) + g− 2�× u+ f (2)

where u represents the instantaneous velocity at time t with corresponding pressure P and
density �. The kinematic viscosity is �. The acceleration due to gravity and the coriolis force
are represented by g and �, respectively. All other body forces are represented by f . Equation
(1) is the continuity equation and Equation (2) the well-known Navier–Stokes equations of
�uid �ow.
The continuity equation (1) and the momentum equations, Equation (2), ignoring the

coriolis and other external forces can be written as
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where p is the kinematic pressure, P=�, which comprises the non-hydrostatic (hydrodynamic),
q, and hydrostatic, ph, components, i.e.

p=ph + q= g(�− z) + q (7)

Substituting Equation (7) into the momentum equations, yield
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where x, y and z, are the two horizontal and one vertical Cartesian coordinates, respectively.
The corresponding velocity components along the horizontal and vertical axes are u, v and
w, respectively.

Free surface boundary condition

At the free surface, two boundary conditions are applied. The �rst is the Kinematic free
surface boundary condition

@�
@t
+ u

@�
@x
+ v

@�
@y
=w (11)

and the second is the dynamic free surface boundary condition which is given by the pre-
scription of the pressure at the free surface usually assumed to be atmospheric.
A convenient form of the kinematic free surface boundary condition is obtained by inte-

grating the continuity equation from the bottom to the free surface. Applying the Leibniz rule
and the kinematic condition yields

@�
@t
+
@
@x

(∫ �

−d
u dz

)
+
@
@y

(∫ �

−d
v dz

)
=0 (12)

Equation (12) represents the conservative form of the free surface boundary condition while
at the same time it accounts for an impermeable bottom. It is often useful when the bottom
is �xed. Its main constraint is that the gradient of the surface pro�le @�=@x must be less than
the grid aspect ratio, �=�x=�z i.e.

@�
@x
6
�z
�x

(13)

and
@�
@y
6
�z
�y

(14)

Assuming the surface tension is negligible and in the absence of tangential stresses at the
surface (i.e. wind) the dynamic free surface boundary condition takes the form

q=0 at the free surface (15)
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Impermeable boundary condition

At impermeable boundaries, the normal velocity and the gradient of tangential velocities are
zero. For example, at the vertical wall parallel to the vertical axis the velocity normal to the
wall, u, and the tangential velocity, w, are given by

u=0 (16)

@w
@x
=0 (17)

Out�ow boundary

The out�ow boundary for free surface �ows are typically obtained from the Sommerfeld’s
radiation condition given by

@�
@t
+ c cos(�)

@�
@x
+ c sin(�)

@�
@y
=0 (18)

where � is the angle that the normal to the boundary makes with the outgoing waves, �
represents anyone of the variables u, v, w and �. The wave phase velocity is represented
by c. Equation (18) performs reasonably well for monochromatic waves but far from perfect
for irregular waves.

NUMERICAL FORMULATION

The discretization of the governing equations is carried out with the �nite di�erence method
on a Cartesian coordinate system. The computational domain is discretized into Nx ×Ny ×Nz
uniform rectangular cells using a collocated grid (see Figure 1) on a cell-centred mesh where
all the variables are de�ned at the centre of the cell. The fourth-order accurate in space,

water surface elevation

∆

∆
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i1
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Figure 1. Layout of the cell-centred collocated grid used in the numerical scheme.
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compact discretization method has been presented by several authors (see for instance
References [12, 13]). The formula for approximating the �rst and second derivatives are
given by

@
@x
=
(
1 +

�x2

6
	2x

)−1
	x0 +O(�x)4 (19)

@2

@x2
=
(
1 +

�x2

12
	2x

)−1
	2x +O(�x)

4 (20)

where the �nite di�erence operators 	x0 and 	2x are the standard second-order central di�erence
formula for the �rst and second derivatives, respectively, i.e.

	x0fi=
fi+1 − fi−1
2�x

(21)

	2xfi=
fi+1 − 2fi + fi−1

�x2
(22)

As �rst proposed by Hirsh [14], the partial di�erential equations are solved by treating
the derivatives as unknowns. Let F and S represent the �rst and second derivatives,
respectively, i.e.

@fi
@x
=Fi (23)

@2fi
@x2

= Si (24)

By eliminating the di�erentials from Equations (19) and (20), the following equations are
obtained:

Fi+1 + 4Fi + Fi−1 =
3
�x

(fi+1 − fi−1) (25)

Si+1 + 10Si + Si−1 =
12
�x2

(fi+1 − 2fi + fi−1) (26)

The two tridiagonal equations (25) and (26) are solved directly for the derivatives, F and S.
The tridiagonal equations can also be represented in matrix form as

Au= b (27)

where A is the tridiagonal matrix. This matrix is constant and typically solved through an
LU decomposition that is carried out once at the start of the simulations. The resulting L and
U matrices are stored and the solution of the matrix is obtained by the computation of the
right-hand side, b, followed by a forward and backward substitution. Note that Equation (25)
can also be used to integrate, in which case it becomes Simpson’s one-third rule.
At the boundaries, the derivatives are determined by a backward di�erence formula that

must be at least one order less than the interior accuracy to maintain a fourth-order accurate
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Figure 2. Diagram of top pressure boundary.

overall solution. The third- and fourth-order solution have been derived by Lele [13], i.e.
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1
�x

(
−5
2
f0 + 2f1 +

1
2
f2

)
; O(�x)3 (28)
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3
2
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3
2
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6
f3

)
; O(�x)4 (29)

For the second derivative boundary, the third-order formula is given by

S0 + 11S1 =
1
�x2

(13f0 +−27f1 + 15f2 − f3); O(�x)3 (30)

The boundary conditions provided above do not account for the systems boundary whether
Dirichlet or Neumann. The formulation above is only used to compute the derivatives.
The Dirichlet or Neumann boundaries are applied for the cell-centred discretization (see
Figure 2) using the following formulae:

u0 = 21
23 u1 +

3
23 u2 − 1

23 u3; O(�x)4 Neumann boundary (31)

u0 = − 3u1 + u2 − 1
5 u3; O(�x)4 Dirichlet boundary (32)

The third-order boundaries are given by

u0 = u1; O(�x)3 Neumann boundary (33)

u0 = − 2u1 + 1
3 u2; O(�x)3 Dirichlet boundary (34)
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The solution method used for the momentum equations follow. De�ne u∗, v∗ and w∗ by
excluding the terms with the dynamic pressure, q.

u∗ − un
�t

= −
[
u
@u
@x
+ v

@u
@y
+ w

@u
@z
+ g

@�
@x

− �
(
@2u
@x2

+
@2u
@y2

+
@2u
@z2

)]n
(35)

v∗ − vn
�t

= −
[
u
@v
@x
+ v

@v
@y
+ w

@v
@z
+ g

@�
@x

− �
(
@2v
@x2

+
@2v
@y2

+
@2v
@z2

)]n
(36)

w∗ − wn
�t

= −
[
u
@w
@x
+ v

@w
@y
+ w

@w
@z

− �
(
@2w
@x2

+
@2w
@y2

+
@2w
@z2

)]n
(37)

so that the discrete form of Equations (8) and (9) can be written as
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The superscript refers to the discrete time-level (e.g. n refers to time, t= n�t). The �rst order
in time explicit method is given by
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where Fu, Fv, Fw and F� are the approximations of the explicit terms and d, is the depth
measured from the still water level. The integration required in Equation (12) from the bottom
to the free surface is evaluated using Equation (25). Since the top cells vary in size with
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time and space, the integration of the top cells require special attention. First the horizontal
velocity is interpolated vertically using a fourth-order mid-point interpolation method [13],
which gives the values at the cell faces. The integration from the free surface to the still water
level is carried out with a direct �t polynomial passing through the �ve nodes comprising
the interpolated (cell faces) and velocity nodes (cell centres). The details of the method are
given in Reference [15].

If=
[
az + b

z2

2
+ c

z3

3
+ d

z4

4
+ e

z5

5

]�
0

(45)

where the coe�cients a, b, c, d and e are determined from the direct �t polynomial. The
rest of the vertical integration beneath the still water level to the bottom of the channel is
obtained using Simpson’s one-third rule, which is also fourth-order accurate.
The Poisson equation for the dynamic pressure distribution can be obtained by substituting

for un+1, vn+1 and wn+1 from Equations (38)–(40) into the continuity equations giving

∇2qn=
1
�t

(
@u∗

@x
+
@v∗

@y
+
@w∗

@z

)
=
1
�t

∇ · u∗ (46)

The variables u∗, v∗ and w∗ are functions of un, vn and wn. The kinematic dynamic pressure,
q, is computed at the time level n, and not n+ 1 as in the pressure projection method. The
solution of the Poisson equation also uses the fourth-order compact �nite di�erence method.
As explained by Roache [16], by applying the divergence operator to the momentum equa-

tions to obtain the Poisson equation for the pressure, the order of the system under solution
has been raised. Boundary conditions for the pressure are therefore required. It is important to
note that no new arbitrary boundary conditions have been used. The boundary conditions for
the pressure are consistent with the original equations being solved. These boundary condi-
tions became necessary only because the derived pressure Poisson equation is of higher order.
The required boundary condition for the pressure is determined by projecting the momentum
equation onto the unit normal, N, to the boundary giving the Neumann boundary.[

@q
@N

]n
�
= − 1

�t
(un+1� − u∗

�) ·N (47)

The dynamic free surface boundary condition is applied using the following formula:

q0 = aq1 + bq2 + cq3 (48)

where q0 is the extrapolated dynamic pressure outside the domain, q1, q2 and q3 are the
interior dynamic pressures (see Figure 2). The coe�cients, a, b and c are to be determined.
A Taylor series expansion about these points with base on the free surface gives the equation
(see Appendix A for the derivation)

⎛
⎜⎜⎝
r1 r2 r3

r21 r22 r23

r31 r32 r33
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⎛
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b
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⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
s

s2

s3

⎞
⎟⎟⎠ (49)
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where

r1 = 1
2 + 
; r2 = 3

2 + 
; r3 = 5
2 + 
 (50)

s= −
(
1
2

− 

)
; 
=

�
�z

(51)

Equation (49) is fourth-order accurate. Third-order solutions can be obtained in a similar
manner. Since, 
, is a function of �, which varies with time and space, the coe�cients also
vary with time and space. They are determined by solving Equation (49) at every step during
the iteration for the dynamic pressure. The Dirichlet boundary conditions for the velocities,
Equations (32) and (34), can be obtained from Equation (49) when �=0.
The corresponding high-order temporal discretization is obtained with the standard, explicit,

single-point, four-stage, Runge–Kutta method.

k1 =�tF(un; qn); u1 = un + 1
2k1 (52)

q1 =L−1(G(u1)) (53)

k2 =�tF(u1; q1); u2 = un + 1
2k2 (54)

q2 =L−1(G(u2)) (55)

k3 =�tF(u2; q2); u3 = un + k3 (56)

q3 =L−1(G(u3)) (57)

k4 =�tF(u3; q3) (58)

un+1 = un + 1
6(k1 + 2k2 + 2k3 + k4) (59)

qn+1 =L−1(G(un+1)) (60)

where F is the approximation of the explicit terms (i.e. Fu, Fv, Fw and F�) in Equations
(41), (42), (43) and (44), respectively. L is the approximation of the Laplace operator in the
Poisson equation and G is the approximation of the right-hand side of the Poisson equation.
The advantage of the high-order time discretization is that there is no constraint on the cell
Reynolds number as explained by Weinan and Liu [17]. Larger time-steps can also be used to
obtain stable solutions for convective-dominated �ows compared with the explicit �rst-order
Euler method.

MODEL VERIFICATION

The performance of the numerical model is assessed by comparing the model prediction with
the analytical solution obtained for a standing wave in a basin and a solitary wave propagating
within a horizontal channel. The standing wave in a basin simulations provide a good test
case to examine any strengths and weaknesses within the numerical scheme. The extent of
numerical dissipation can be determined as well as the accuracy and stability of the scheme
under various conditions. The in�uence of the grid spacing and time-step on the stability of
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the numerical scheme can be evaluated. It provides some grounds for the inter-comparison of
numerical schemes for free surface �ows. The solitary wave test case enables assessment of
the non-linear e�ects on free surface �ow.
Further numerical experiments are carried out to explore the performance of the model for

wind-driven �ow where the driving force for the �ow is a constant wind stress imposed at the
surface. Both convective and di�usive forces are important in this simulation. The frictional
forces ensure that the �uid particles beneath the surface are set in motion in the course of
time. After a certain time period, steady-state conditions are attained and there is no signi�cant
change in the velocity distribution within the �ow.

Standing wave in a basin

The standing wave in a basin is probably the best test case for non-hydrostatic free surface
�ow numerical schemes. Water contained in a rectangular basin oscillates with time. In the
absence of viscous forces, the oscillations should continue without loss of energy. A plot of
the time series of any point on the free surface should give a sinusoidal wave. The initial
conditions comprise a sinusoidal water surface instantaneously at rest. For the simulations
discussed in this paper, the width of the channel is 10:0m and the depth from the still water
level is also 10:0m. The initial surface pro�le is given by

�= a cos kx; 06x610 (61)

where the wavenumber, k=2�=L, the amplitude of the oscillations is a=0:1m and L=20m
is the wavelength. Since the wave steepness ak=�=10 is small, the dispersion equation from
linear wave theory [18] can be used to determine the period, T , of the oscillations i.e.

T =

√
2�L

g tanh(kd)
(62)

For the particular case where L=20m; d=10:0m, and g=9:81m=s2 the period of oscillations
T =3:586 s.
The plot of the time series at any point on the water surface distance, x, from the left

end of the basin should yield a sinusoidal wave given by Equation (63). The horizontal and
vertical velocities at any point, distance, x, within the �ow at a depth, z, measured from the
still water level are given by Equations (64) and (65). The corresponding kinematic dynamic
pressure can be obtained from Equation (66).

�= a cos kx cos !t (63)

u= a
gT
L
cosh k(d+ z)
cosh kd

sin kx sin !t (64)

w= a
gT
L
sinh k(d+ z)
cosh kd

cos kx sin !t (65)

q= g�
(
cosh k(d+ z)
cosh kd

− 1
)

(66)

where !=2�=T .
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Figure 3. Surface elevation and kinematic dynamic pressure time series.

A comparison of the numerical and analytical results for the surface elevation time series at
a point on the surface located 0:5m from the left end of the basin and the kinematic dynamic
pressure time series for a point located 9:5m from the still water level and 0:5m from the
left end of the basin are presented in Figure 3. Horizontal and vertical velocity time series
for a point located 0:5m below the still water level and 4:5 and 0:5m from the left end of
the basin, respectively, are presented in Figure 4.
The grid spacing used in the simulations are 1:0m for both the horizontal and vertical

axes, which is �x=�z=L=20, and the time-step is �t=T=35. Typical grid spacing used
for similar simulations have been 0:5m. The results show that numerical dissipation is prac-
tically eliminated and the phase error after 100 oscillations is estimated at 0.027. There is an
insigni�cant change of the phase error with smaller wave steepness.
The four-stage Runge–Kutta method of time integration requires the solution of the Poisson

equation at each stage. This would appear to impact adversely on the e�ciency of the method.
Numerical experiments have, however, shown that the second- and fourth-stage solutions
converge much more quickly if the pressures computed prior to the iterations are used at the
starting point for the new iterations. The same applies to the �rst and third stages although
they take a relatively longer time.
It has been suggested that a single Poisson solve could be used for each time-step for the

computation of pressure with the fourth-order Runge–Kutta method [19]. Since about 90%
of the simulation time is taken in the solution of the Poisson equation, this would o�er a
more e�cient solution method. The numerical experiments for the case of free surface �ow
does not appear to support this position. It was determined that a much smaller time-step is
required for the single Poisson solve compared with four Poisson solves.
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Figure 4. Horizontal and vertical velocity time series.

For long time simulations (i.e. covering 100 waves), about one-tenth the time-step used
for the four Poisson solves is required to carry the simulations to the one-hundredth wave.
Larger time-steps result in unstable solutions. Figures 5 and 6 show the numerical results for
the �rst 10 waves and the last 10 waves in the 100 waves that was simulated. The solution
involving the single Poisson becomes unstable between the 70th and 80th wave (not shown
in plot). The solution using two and four Poisson solves show identical results for the same
time-step. However, the four Poisson solves yields stable solutions with a time-step that is
twice that used for the two Poisson solves.
These experiments suggest that the four Poisson solves are probably all right for simulations

and this makes possible the use of the largest time-step. Two Poisson solves are probably the
optimum number. It should be noted that numerical experiments with the standing wave in a
basin suggest that the two Poisson solves require half the time-step that is possible with the
four Poisson solves. The two Poisson solves are applied at the �rst and third stages of the
standard Runge–Kutta method. With the use of dynamic pressures computed at the previous
stage in the solution as the starting point for the iterations, a faster rate of convergence can
be obtained.

Solitary wave in a long channel

The simulation of a solitary wave travelling in a channel with constant depth provides another
means of verifying the performance of the numerical schemes. The solitary wave is a local
elevation of the water surface above the mean water level without any other local elevation or
depression of the surrounding surface. The wave produces transport of mass in the direction
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Figure 5. E�ect of one Poisson solve per time-step on solution.
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of propagation only. The velocity of the wave is constant for a constant water depth and the
distribution of pressure and velocities under the wave remains constant as the wave travels.
The analytical solution of the solitary wave is provided by Laitone [20]. The pro�le of the
surface elevation, �, and velocities, u and w, at a depth, z, and time, t, for a solitary wave
travelling with a celerity, c, are given by Laitone [20]

c=
√
g(H + d) (67)

�=H sech2
(√

3H
4d3

(x − ct)
)

(68)

u=
√
gd
H
d
sech2

(√
3H
4d3

(x − ct)
)

(69)

w=
√
3gd

(
H
d

)3=2 z
d
sech2

(√
3H
4d3

(x − ct)
)
tanh

(√
3H
4d3

(x − ct)
)

(70)

where H is the height of the wave and d the depth of water.
Numerical experiments were carried out for a water depth of 10:0m in a channel of length

1500m. The grid spacing used was �x=�z=2:0m and the time-step was 0:2 s. Pro�les of
the surface elevation, dynamic pressure and velocities were determined from the numerical
model at times 60 and 100 s and presented in Figure 7. The velocities were obtained at a
depth of 5:0m from the mean water level. For the purposes of comparison, the corresponding
analytical solutions are also presented.
Contours of the distribution of dynamic pressure, horizontal and vertical velocities are pre-

sented in Figures 8 and 9 at times 60:0 and 100:0 s. The initial conditions used for the
simulations correspond to time 20:0 s. As can be observed from the plots, the dynamic pres-
sures are positive under the wave with the highest occurring beneath the wave crest. It is
symmetrical about the axis passing through the crest. Further away from the crest, it contin-
ues to decrease in both directions attaining a minimum before rising again and approaching
hydrostatic conditions asymptotically further away from the wave crest.
The horizontal velocity distribution remains almost constant with depth as would be

expected. Along the channel, it rises beneath the wave attaining a maximum beneath the
crest. The pro�le of the horizontal velocity distribution is also symmetrical about the axis
passing through the crest. The vertical velocity is maximum some distance in front of the
wave and minimum the same distance after the wave. It is zero beneath the wave crest for
all depths and approaches zero asymptotically away from the wave in both directions. The
pressure distribution determined from the numerical solution do not exhibit numerical oscil-
lations just as the contours of the velocity distributions. This gives further evidence that the
problem of pressure–velocity decoupling has been eliminated with the use of the high-order
solution method.
The distribution of dynamic pressures and velocities at the two separate times, 60:0 and

100:0 s, shows an invariant distribution of all the �ow variables. The form of the distribution
remains constant with time as the solitary wave propagates over constant depth. There is
symmetry along the vertical line passing through the crest of the wave. The larger grid spacing
used in the simulations compared with the grid spacing used for second-order solutions goes
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Figure 7. Comparison of analytical (circles) and numerical (solid lines) solutions for surface
elevation pro�le for solitary wave 1:0m height and depth of 10:0m (top) at time 60:0 and

100 s, horizontal (middle) and vertical (bottom) velocities are at a depth of 5:0m.

to demonstrate the e�ciency and accuracy of the fourth-order solution method. Numerical
dissipation is negligible for all practical purposes.

Wind-driven circulation

The simulation of �ow induced by the application of stresses on the free surface by a wind
blowing at a constant velocity was carried out next. This numerical experiment involves the
di�usive terms unlike the other simulations. A closed basin, 5:0m in depth and 20:0m long is
assumed. A wind speed of 10:0m=s is applied to the free surface in the negative x direction
until steady-state conditions are attained. The grid spacing used along both the vertical and
horizontal axes is 0:5m and the time-step was 0:1 s. The initial conditions assume the �uid to
be at rest. Streamlines determined for the circulation pattern that develops in the �ow �eld at
di�erent times 700 and 2000 s are presented in Figure 10. These show the general pattern of
circulation before and at the attainment of steady-state conditions, which occurs some time at
about 2000 s. The streamlines show smooth changes without oscillations close to the wall.
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Figure 8. Distribution of kinematic dynamic pressure and velocities under solitary
wave at time 60 s (pressures are in m, velocities in m=s).

The velocity �eld for the time when the �ow is steady is presented in Figure 11 corre-
sponding to the time 2000 s. As can be observed, the surface �uid particles accelerate towards
the left boundary moving horizontally until close to the boundary when they decelerate and
change direction �owing downwards. The bottom �uid particles move in the opposite direc-
tion, from the left to right. The �ow close to both wall boundaries exhibit a high vertical
acceleration that is not reproduced by the model using the hydrostatic approximation.

CONCLUSION

The two simulations involving only the convective terms provide a means of testing the
merits of the high-order numerical scheme. These simulations are the standing wave in a
basin and the propagation of a solitary wave in a long channel. The availability of analytical
solutions make possible comparison with numerical solutions. Coarser grid spacings were
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Figure 9. Distribution of kinematic dynamic pressure and velocities under solitary
wave at time 100 s (pressures are in m, velocities in m=s).

used in all the simulations compared with typical simulations using second-order accurate
methods. Tridiagonal matrices are solved for both �rst and second derivatives at each stage
of the fourth-order Runge–Kutta method. The Poisson equation is solved twice at each time-
step. The use of the high-order time integration makes possible convectively stable solutions
for larger time-steps. Alternatively, the explicit �rst-order Euler method requires only one
Poisson solve per time-step. However, the time-step necessary to obtain stable solutions is
much smaller.
For the standing wave in a basin, the total number of cells used was 100 as compared with

400 that is typically reported in the literature. This has a profound in�uence on the time taken
for the simulations and data storage requirements of the model. The smaller truncation errors
associated with the compact high-order scheme also makes possible longer time simulations
compared with the second-order accurate methods.
The high resolution characteristics of the high-order numerical scheme yields much smaller

phase errors and numerical dissipation is practically non-existent. It is estimated that the
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phase errors are of the order of 0.027% per wave period. The high-order time integration
method was necessary to take advantage of larger time-steps for the simulations and remove
the constraints of the cell Reynolds number. The explicit �rst order in time or the implicit
second-order Crank–Nicolson methods are also possible alternatives.
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Collocated grids were used to remove some of the complexities of the staggered grid
system and facilitate the use of the multigrid method in three-dimensional cases for iterative
solution of the pressure Poisson equation. The use of the collocated grid is also advantageous
for discretizations using curvilinear coordinates as only one metric of the transformation is
required for each cell. This provides a potentially more e�cient method than the methods
using the staggered grid.
The current numerical scheme is limited by the extent of non-linearity that it can accommo-

date. This limitation can be removed by changes in the manner in which the application of the
dynamic free surface boundary condition is determined. This is the subject of ongoing work.

APPENDIX A

Derivation of pressure boundary conditions

The pressure at the surface is assumed to be atmospheric (i.e. q=0). The extrapolation to
obtain the pressure outside the computational domain is carried out such that the surface
pressure is accounted for (see Figure 2). Assume the pressure q0 is in the form

q0 = aq1 + bq2 + cq3 (A1)

and


=
�
�z

(A2)

The distance from the water surface to point q0 is given by

z= − ( 12 �z − �)= (
 − 1
2 )�z (A3)

Writing Taylor series for q0, q1, q2 and q3 with base point on the water surface, qs, gives

q0 = qs +
(

 − 1

2

)
�zqz +

(

 − 1

2

)2 �z2
2!
qzz +

(

 − 1

2

)3 �z3
3!
qzzz +O(z)4 (A4)

q1 = qs +
(

+

1
2

)
�zqz +

(

+

1
2

)2 �z2
2!
qzz +

(

+

1
2

)3 �z3
3!
qzzz +O(z)4 (A5)

q2 = qs +
(

+

3
2

)
�zqz +

(

+

3
2

)2 �z2
2!
qzz +

(

+

3
2

)3 �z3
3!
qzzz +O(z)4 (A6)

q3 = qs +
(

+

5
2

)
�zqz +

(

+

5
2

)2 �z2
2!
qzz +

(

+

5
2

)3 �z3
3!
qzzz +O(z)4 (A7)

The subscripts z, denote partial di�erentiation. For example

qzz=
@2q
@z2
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By matching the coe�cients and noting that qs=0 the following equations are obtained:⎡
⎢⎢⎢⎣
(
+ 1

2) (
+ 3
2) (
+ 5

2)

(
+ 1
2)
2 (
+ 3

2)
2 (
+ 5

2)
2

(
+ 1
2)
3 (
+ 3

2)
3 (
+ 5

2)
3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
a

b

c

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(
 − 1

2 )

(
 − 1
2 )
2

(
 − 1
2 )
3

⎤
⎥⎥⎥⎦ (A8)

The above boundary equation is fourth-order accurate. A similar equation can be developed
with third-order accuracy which is derived from

q0 = aq1 + bq2 (A9)[
(
+ 1

2) (
+ 3
2)

(
+ 1
2)
2 (
+ 3

2)
2

][
a

b

]
=

[
(
 − 1

2 )

(
 − 1
2 )
2

]
(A10)

The boundary condition for the velocities normal to the walls (i.e. Dirichlet boundary condi-
tions) can be derived using the above equations for 
=0. Solving for the coe�cients a, b
and c gives

a= − 3:0; b=1:0; c= − 1
5 ; O(�z)4 (A11)

a= − 2:0; b= 1
3 ; O(�z)3 (A12)

The boundary equations for the velocities normal to the walls apply also to the pressure
boundary at the walls.
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